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Response to:   Edward K. Cheng, A Practical Solution to the Reference 
Class Problem, 109 Colum. L. Rev. 2081 (2009). 

The reference class problem is illustrated by what Artificial 
Intelligence researchers call the Nixon Diamond.1  Quakers are usually 
pacifists and Nixon is a Quaker.  Republicans are usually not pacifists 
and Nixon is a Republican.  On the total evidence, that Nixon is a 
Quaker and a Republican, what should we believe about whether Nixon 
is a pacifist? 

The problem arises very generally, whenever statistical evidence is 
applied to an individual case.  The case, Nixon, is a member of two 
different “reference classes”—the class of Quakers and the class of 
Republicans—and in these classes the frequency of the attribute or 
feature to be predicted—i.e., being a pacifist—differs.  How then can we 
decide how the statistical evidence bears on the case?  Should we attempt 
to find a best, most relevant, reference class?  Or should we attempt to 
combine evidence from the various reference classes of which the case is 
a member, and if so, how? 

In “A Practical Solution to the Reference Class Problem,”2 Edward 
K. Cheng usefully surveys the ways in which the problem arises in legal 
contexts.  In United States v. Shonubi,3 sentencing guidelines required an 
estimate of how much heroin Charles Shonubi, a Nigerian drug 
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1. Raymond Reiter & Giovanni Criscuolo, On Interacting Defaults:  Proceedings of 
the 7th International Joint Conference on Artificial Intelligence 270 (1981). 

2. Edward K. Cheng, A Practical Solution to the Reference Class Problem, 109 
Colum. L. Rev. 2081 (2009).  

3. 895 F. Supp. 460 (E.D.N.Y. 1995), discussed in Peter Tillers, If Wishes Were 
Horses:  Discursive Comments on Attempts to Prevent Individuals from Being Unfairly 
Burdened by Their Reference Classes, 4 L. Probability & Risk 33 (2005). 
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smuggler, had carried through New York’s John F. Kennedy Airport 
(JFK) on seven previous trips during which he had been undetected.  
The estimate was based on the average amounts of heroin found on 
Nigerian drug smugglers caught at JFK airport in the time period.  Why 
should that be used as the reference class relevant to the case, rather 
than, say, George Washington Bridge tollbooth collectors (Shonubi’s day 
job)?  Or, take a more typical case involving valuation:  Valuing a house 
for sale involves estimating its price from the sale records for “similar” 
houses.  No other house is exactly the same as the given one, so how 
widely or narrowly should one choose the reference class of “similar” 
houses, and on what criteria?  Number of bathrooms?  Age?  Street 
number? 

Statistical theory has been dealing with inference from quantitative 
data for a very long time.  So it is reasonable to hope, as Cheng argues, 
that the discipline of statistics will have available methods applicable to 
the reference class problem.4 

It is true that traditional statistical theory tends to avoid the 
problem, taking for granted in expositions that the reference class has 
been correctly identified before inference begins.  The basic idea of 
statistical inference is to observe counts—i.e., frequencies, proportions—
in some reference class and apply the result as an estimate for a new, 
similar case.  For example, one might draw a line of best fit through data 
of age and heights of trees in order to apply the estimated relationship 
between age and height to trees not yet observed.  In expounding such 
techniques it is normally assumed that one has an unproblematic set of 
measurements of an identifiable and reasonably homogeneous set of 
trees.  It is normally left to the statistician’s good sense to choose a data 
set relevant to the problem. 

But the recent expansion of statistics into the “data mining” of huge 
“data warehouses”5 has forced consideration of how to identify what is 
relevant in large and mainly uninformative heaps of data, typically not 
collected with the current problem in mind.  Cheng argues that a 
practical solution to the problem, at least when opposing counsel have 
put forward differing clear proposals on what the reference class should 
be, lies in modern “model selection” methods which decide on the 
appropriate complexity of a model by a formula such as the Akaike 
Information Criterion.6  This Essay argues that a simpler area of recent 
statistics, the theory of feature selection methods, is more relevant.  
Since they are more straightforward and do not require an 
understanding of the issues concerning model complexity, they are 

 

4. Cheng, supra note 2, at 2095 (“[T]he reference class problem is . . . a subspecies of 
the model selection problem [and] model selection criteria . . . eliminate the reference 
class problem as it arises in legal contexts.”).   

5. See generally Daniel T. Larose, Discovering Knowledge in Data:  An Introduction 
to Data Mining (2005); George M. Marakas, Modern Data Warehousing, Mining and 
Visualization:  Core Concepts (2003). 

6. Cheng, supra note 2, at 2093–94. 
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explained first, in Part I of this Essay.  Part II discusses model complexity 
and argues that Cheng’s approach is workable, but that the statistical 
literature provides some equally credible alternative approaches. 

I.  FEATURE SELECTION METHODS 

The methods most applicable to problems like those in the legal 
context, such as real estate valuation, fall under the heading of “feature 
selection,” also known as “variable selection” or “attribute selection.”7  

A 
database is organized into many rows (the cases) and columns (the 
fields, attributes, properties, or features of the cases), as in the following 
schematic example: 

 

ID Address Age 

(yrs) 

Bedrooms Area 

(sq ft) 

Suburb median 

sale previous 12 

months 

Air 

conditioning? 

 

. . . 

1 1129 South 

Pkwy, 

Owens 

12 4 9000 $1.2M Y  

2 52 Central 

Ave, 

Springfield 

40 2 4703 $440,000 N  

3 1 Liberty 

Ave, 

Springfield 

5 3 4550 $660,000 Y  

 

. . . 

       

Table 1:  Sample Real Estate Database 
 

 In general, one should imagine many more cases (rows):  hundreds 
for real estate but millions for many kinds of health and gene data and 
 

7. See generally Avrim L. Blum & Pat Langley, Selection of Relevant Features and 
Examples in Machine Learning, 97 Artificial Intelligence 245 (1997) (discussing feature 
selection in machine learning); Isabelle Guyon & André Elisseeff, An Introduction to 
Variable and Feature Selection, 3 J. Machine Learning Res. 1157 (2003) (same); Mark A. 
Hall & Geoffrey Holmes, Benchmarking Attribute Selection Techniques for Discrete Class 
Data Mining, 15 IEEE Trans. on Knowledge & Data Engineering 1437 (2003) (same); 
Patricia E.N. Lutu & Andries P. Engelbrecht, A Decision Rule-Based Method for Feature 
Selection in Predictive Data Mining, 37 Expert Sys. with Applications 602 (2010) (same). 
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financial records, and possibly thousands of features (columns).  In such 
large cases, the great majority of features are expected to be irrelevant to 
the task of prediction.  For example, not every feature or measurement 
in a gene database will be helpful in predicting cancer, and most 
features of financial records will be irrelevant to determining 
creditworthiness.  The more features in a database, the harder it is to 
evaluate each feature’s relevance. 

The aim of feature selection methods is to determine from large 
amounts of data which of the many properties or features of the 
individual cases are relevant to a given classification or prediction task.  
For example, of the many features of houses in a real estate database—

house size, lot size, number of bathrooms, street number, age, zip code, 
etc.—which are relevant to predicting the price? 

One major purpose of identifying relevant features is to prevent the 
computations from becoming unfeasible, since computing with all the 
data, most of which is irrelevant, would be impossible for databases of 
the size typically used.  But identifying the relevant features is also an aim 
in itself, since it will enable researchers to understand the data and form 
hypotheses as to what features are driving the system.  These features 
could then either be classified as a symptom or identified as a cause and 
possibly changed.8 

For the present purpose, however, the main significance of feature 
selection is that it largely solves the reference class problem.  Choosing 
the relevant features determines the appropriate reference class for a 
case:  Ideally, it is the class of those items that share with it all the 
features that have been found relevant for the task.  However, that ideal 
is not always attainable, as discussed below.  There is an accepted 
definition of the relevance of a feature to an outcome—for example, of 
“number of bathrooms” to “house price.”  A feature is relevant if it gives 
some information about the outcome—i.e., if “number of bathrooms” 
makes some difference to “house price” in the sense that, on average, a 
different number of bathrooms goes with a different house price.  
Relevance is correlation.  In a very simple example, the reason that 
traffic lights are informative is that green is very highly correlated with it 
being safe to drive through the intersection:  green and it is safe, red and 
it is not.9  The color of the car ahead, however, is not correlated with the 
safe time to drive, so there is no point attending to it when deciding 
whether to drive across the intersection.  There is a standard definition 
of correlation and there are some alternative measures of association to 
choose from, but they are all intended to measure the degree to which 
one variable “goes with” another. 

 

8. The problem then becomes what to do with the identified relevant features in 
constructing a predictive model; that is, more a task of model selection and will be 
discussed later.  See infra Part II (discussing different approaches to model selection).   

9. See R.K. Templeton & J. Franklin, Adaptive Information and Animal Behaviour, 
10 Evolutionary Theory 145, 145–46 (1992) (discussing traffic light example and adaptive 
information).   
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Features may be irrelevant to prediction in two ways:  A feature is 
either not correlated with the variable being predicted, or it is correlated 
but is redundant because other features provide the same information, 
as they are highly correlated with it.  Work in data mining concentrates 
on finding a suitable small subset of features, all relevant and, as far as 
possible, not redundant, which competently predict the target.  There 
are some subtleties about the relevance of sets of features (as opposed to 
individual features), since two features could be relevant in combination 
although they are not relevant individually.

10
   

Knowledge of the relevance of features can come in two ways.  
Either one measures correlation in the data, or one brings to bear prior 
knowledge of relevance—or perhaps more often, irrelevance.  In 
Shonubi, discussed in Cheng and earlier, where the amount of drugs 
smuggled by Shonubi had to be estimated from data on “similar” drug 
smugglers, there was a reasonable prior belief that being a Nigerian drug 
mule was relevant to the amount of drugs smuggled, while having a day 
job as a toll collector was not.11  Humans’ prior beliefs on frequencies—
e.g., whether eating colored mushrooms is often followed by illness, 
whether rocks typically have lions behind them—have been much 
studied and often found to be sound.  But they have some persistent 
biases, such as a tendency to overweight very rare disasters such as air 
crashes.  Therefore, any alleged prior knowledge is an important matter 
of evidential weight and thus important to reach a correct decision.  So it 
should be subject to scrutiny in the usual way, not by statistical formulas, 
but by such means as a committee of experts or cross-examination in 
court.12 

Having selected the features relevant to the prediction task, one 
then wishes to create a model.  That is, one decides on the mathematical 
form of the relationship between the relevant features and the target.  In 
the classic reference class problem, the outcome is predicted by a very 
simple function of the statistics of the reference class.  For example, in 
Shonubi, the estimate of drugs smuggled by Shonubi was the average of 
drugs smuggled by members of the reference class:  Nigerian drug mules 
at JFK during the time period.  The question then is, how should the 
reference class be chosen, once the set of relevant—or strongly 
relevant—features have been identified? 

There is a unique natural choice:  The correct reference class is that 
defined by the intersection of the relevant features.  If being Nigerian, 
being a drug mule, being at JFK, and being in the time period are all 

 

10. Hopefully such problems are rare.  There are a number of algorithms available 
for searching a database and finding sets of relevant features. 

11. See Cheng, supra note 2, at 2082 (discussing statistical comparison in United 
States v. Shonubi, 895 F. Supp. 460, 466 (E.D.N.Y. 1995)).   

12. See, e.g., James Franklin et al., Evaluating Extreme Risks in Invasion Ecology:  
Learning from Banking Compliance, 14 Diversity & Distributions 581, 582 (2008) 
(discussing how expert committees “encourage[d] care and transparency” in Australian 
import biosecurity agency analysis). 
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reasonably believed to be relevant to the amount of drugs smuggled, and 
there is no evidence that any other feature on which data is available is 
relevant, then the ideal choice of reference class is Nigerian drug 
smugglers at JFK in the time period. 

The reference class problem then divides into two, depending on 
whether this ideal choice of reference class is usable.  It is usable if there 
is a sufficiently large number of cases in it for a reliable estimate of the 
target.  A data set that is too small, or even empty, will not support 
reliable estimates, since there is too much chance involved in which few 
cases happened to land in the set.13  To know whether the data is enough 
to ensure reliability of the estimate, one consults standard statistical 
theory on the variance or standard deviation of the estimate in question.  
That is, one asks how variable the estimate is given the sample size:  the 
smaller the sample, the more variable and thus unreliable the estimate.  
For example, if n drug smugglers are found with amounts x1, . . ., xn of 
drugs, of which the average is x , then the standard deviation of x  is 
approximately the standard deviation of the original n observations 
divided by n .  Or, if the problem is to estimate a probability based on a 
proportion in a small reference class—for example, eighteen of twenty 
cars on the surveillance video went through a red light, so the chance 
the defendant’s car went through a red light is ninety percent—then the 
reliability of the estimate is given by calculating a “confidence interval.”14  
This calculation again improves with the square root of the number of 
instances.  Thus, we can quantify how much increasing the size of the 
reference class increases the reliability of the estimate, and how 
unreliable a very small reference class is. 

If, on the other hand, the reference class defined by the intersection 
of relevant features is too small for reliable inference, or perhaps even 
empty, one is still left with useful information in the wider classes 
defined by taking some but not all of the relevant features.  The statistics 
in those different classes will usually be different.  For example, Nigerian 
drug smugglers in general and drug smugglers at JFK may have different 
averages of drugs smuggled, even though one may not have data on 
Nigerian drug smugglers at JFK.  The problem then is how to combine 
the statistics in the different classes in which an individual lies, in order 
to make an estimate applicable to the individual case.  A paradigm of the 
 

13. Reichenbach said when coining the phrase “reference class problem” that it 
should be “the narrowest class for which reliable statistics can be compiled,” which is 
correct, except that one does not narrow a relevant reference class by splitting it 
according to irrelevant attributes.  Hans Reichenbach, The Theory of Probability 374 
(1949). 

14. See generally Lawrence D. Brown, T. Tony Cai & Anirban DasGupta, Interval 
Estimation for a Binomial Proportion, 16 Stat. Sci. 101, 101 (2001) (discussing “interval 
estimation of the probability of success in a binomial distribution”).  Calculators that 
measure the confidence interval are available online.  See Binomial Proportion 
Confidence Interval:  Web-based Calculators, Wikipedia, at 
http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval (last visited Feb. 
12, 2010) (on file with the Columbia Law Review) (providing links to web-based 
calculators). 
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problem is: 
Suppose we have under observation a certain Jones, who is 
found to be a Texan and a philosopher.  We know that 99 per 
cent of all Texans are millionaires, and that only 1 per cent of 
all philosophers are millionaires (and we have no information 
about the class of Texan philosophers).  On that evidence, what 
should we conclude about whether Jones is a millionaire?  We 
would know the probability of Jones being a millionaire, given 
either one of those pieces of information, but what should be 
conclude when we have both?15 

This problem unfortunately is unsolved.  If the estimates coming 
from the different classes are close to one another, then of course it does 
not matter much which one is used, as the estimates in effect concur.  If, 
as in the example, the estimates conflict, then any combination of them, 
even if correct, is unreliable.  In that case, the issue may come down to 
whether one estimate is better on intuitive or other external grounds.  
For example, one may be reduced to arguing in court whether being 
Texan or being a philosopher is known to be more relevant to wealth. 

We come now to the choice and fitting of models, where it is 
determined how the data deemed relevant will be used to make the 
estimate. 

II.  MODELS:  SIMPLE OR SMOOTH? 

Cheng poses the reference class problem as one of “model 
selection.”

16
  Statistical models comprise a range of techniques for 

deciding the form of the method to be applied to data before the 
parameters of the model are chosen by fitting it to the data.  For 
example, one may decide that a linear, line of best fit model is 
applicable, and then find the slope of the line by fitting it to the data.  
That is illustrated in the top two panels of Cheng’s Figure 1, which show 
a typical dataset of observations (Figure 1a) and a straight line of best fit 
to the data (Figure 1b).17  The line expresses the best linear relationship 
between the two measured quantities—here, study hours and GPA—
allowing a prediction of GPA from study hours for data not yet observed. 

It is possible to fit more complex models, with quadratic, fourth 
degree or other formulas, as illustrated in Figures 1c and 1d, in the hope 
of obtaining more accurate predictions.  That hope may or may not be 
realized.  Sometimes more complex models appear to do better than a 
simple straight line (as in Figure 1c), while sometimes they appear to 
have become overcomplicated and do worse (as in Figure 1d).  Cheng 
recommends choosing simple models—that is, ones with few 
parameters—with the degree of complexity chosen according to Akaike’s 

 

15. S.F. Barker, Induction and Hypothesis 76 (1957). 
16. Cheng, supra note 2, at 2090–92. 
17. Id. at 2091. 
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Information Criterion or some similar formula.18  That is a respectable 
option, according to the statistical literature, and gives reasonable results 
when it comes to prediction.  But it is not the only option, and it is 
arguably not well grounded in theory.  An alternative to that 
“Ockhamist” approach, as it might be called in view of its emphasis on 
simplicity, is a “smoothing” approach, which does not care about the 
complexity of models as long as they are smooth, that is, varying little 
from point to point. 

Cheng Fig. 1:  Example Fits to Observed Datapoints 
 

To explain the contrast between the two styles of models, let us go 
back to Cheng’s example of fitting a curve to noisy one-input, one-output 
data.

19
  The problem is:  Given some points generated by an underlying 

but unknown function, perhaps with noise, how can you fit the best 
curve to them?  In this sense, “best” would mean the ability to predict 
new points that would be generated by the same process. 

One good feature of the problem is that, on the whole, the eye is 
quite competent to judge fit.  One can see that the line in Figure 1a is 
too straight, the curve in Figure 1d too irregular, and the smooth curve 
in Figure 1c is about right.  The eye, of course, does not see the formulas 

 

18. Id. at 2093–94. 
19. Id. at Part II.A (detailing model selection problem).  
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or the number of parameters in them, but only the smoothness of the fit.  
Another positive feature of the problem is that there are several 
mathematical methods available, implemented in software, that give 
more or less the same answer—polynomial regression, neural networks, 
smoothed splines, and kernel smoothing, among others.  (To say that 
they give the same answer does not mean that they give the same or 
similar formulas, but similar graphs of the fitted curve.)  The 
disadvantage of the problem is that there is still no agreement on the 
basics of the theory, the cause of the agreement between methods, or 
what feature the answer has that makes it the right answer.  There are, in 
fact, two radically different views on the theory:  an Ockhamist view and 
an anti-Ockhamist view. 

According to the view based on Ockham’s razor, it is a matter of 
choosing the right number of parameters for the curve.  If one decides 
to fit a polynomial, one can choose a line, a quadratic, a cubic, and so 
on.  A line is described by two parameters, intercept and slope, that are 
to be chosen by, or “fitted to,” the data.  A quadratic needs three 
parameters, a cubic four, and so on.  If one chooses too few 
parameters—a too simple curve—it fails to fit the data well.  On the 
other hand, if one chooses too many, the curve easily fits the actual data, 
but because it wobbles like jelly in response to the details of the actual 
data set, it would have been different if fitted to another data set 
generated by the same process.  Hence it predicts poorly:  It is said to 
have “overfitt[ed]” the data, to be “fitt[ed] to the noise,” or to have “high 
variance.”20 

If one decides to fit one of a fixed family of parametric curves, such 
as polynomials, there is a reasonably well-established theory on how to 
choose the right number of parameters for a particular data set, and on 
why that number is correct.  Bayesian statisticians with a background in 
physics have provided an analysis based on the precision of a prior 
distribution with few parameters versus the imprecision of one with 
many:  A model with many trainable parameters “hedges its bets,” so to 
speak, by being ready to fit anything, and hence is less “falsifiable” than a 
more precise one.21  One speaks of “O[ckham’s] hill,” which has a peak 
at the correct number of parameters.22  Statisticians who are not card-
carrying Bayesians have a similar theory, which issues in a prescription 
called the Akaike Information Criterion for the number of parameters.23 

 

20. See, e.g., Wallace E. Larimore & Raman K. Mehra, The Problem of Overfitting 
Data, 10 Byte 167, 168 (1985) (“[O]verfitting lessens the predictive value of the model.”). 

21. See Prasanta S. Bandyopadhayay, Robert J. Boik & Prasun Basu, The Curve-
Fitting Problem:  A Bayesian Approach, 63 Phil. Sci. S264 (1996) (using Bayesian theorem 
to solve curve-fitting problem); William H. Jeffreys & James O. Berger, Ockham’s Razor 
and Bayesian Analysis, 80 Am. Sci. 64, 68 (1992). 

22. See David J.C. MacKay, Bayesian Interpolation, 4 Neural Computation 415 (1992) 
(arguing Bayesian analysis infers values regularizing constants and noise levels, leading to 
effective number of parameters determined by data set). 

23. See Malcolm Forster & Elliot Sober, How to Tell When Simpler, More Unified, or 
Less Ad Hoc Theories Will Provide More Accurate Predictions, 45 Brit. J. for Phil. Sci. 1 
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That works well and is reasonably convincing in the context of 
physics, where there is a prior expectation that simple models can often 
be found.  It is not so clear that, where things are expected to be 
complex, as in economic modeling, taking a simple model is the only or 
best method of producing a falsifiable model, that is, one that will be 
found to perform well on new data. 

Fig. 2:  Spline Smoothing of Observed Datapoints24 

 

In response, the anti-Ockhamist school makes two points.  Firstly, 
“having few parameters” is not the same thing as “simple”:  If one takes 
any wobbly curve, such as the cross-section of a piece of corrugated iron, 
it can stand in place of the straight line in the above example and 
generate a family of curves.  It has not been explained why the bottom 
level of the family should be, for example, straight.25  More importantly, 
some other methods which give much the same answer graphically, such 
as smoothed splines, achieve the result by finding a curve that is 

 

(1994); I.A. Kieseppä, Akaike Information Criterion, Curve-Fitting, and the Philosophical 
Problem of Simplicity, 48 Brit. J. for Phil. Sci. 21 (1997). 

24. B.W. Silverman, Some Aspects of the Spline Smoothing Approach to 
Nonparametric Regression Curve Fitting, 47 J. Royal Stat. Soc’y B. 1, 9 (1985). 

25. Kieseppä, supra note 23 (analyzing solutions to problems of “bumpier curves” 
and “smoother curves”); André Kukla, Forster and Sober on the Curve-Fitting Problem, 46 
Brit. J. for Phil. Sci. 248, 249 (1995) (same). 
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sufficiently smooth, but not too smooth–but the curve does not have few 
parameters.  Smoothing methods work by replacing the datapoints with 
averages of nearby datapoints:  The value of the curve at any point is the 
weighted average of nearby datapoints.  Different methods are 
distinguished by different technical decisions on how to weigh and 
determining how close is “nearby.” 

Given a smoothing method, the main problem is to decide on the 
right degree of smoothing:  smooth too much and there is just a straight 
line that has lost most of the structure of the data, smooth too little and 
the result wobbles around fitting the idiosyncracies of the individual data 
set.  In most circumstances, the right degree of smoothing is determined 
by the method of cross-validation, which calculates how well the estimate 
would predict a datapoint if it were left out:  If the curve would be little 
changed by leaving out a datapoint, and would also predict that 
datapoint well, the degree of smoothing is correct.26 

Further, in some related contexts, although simplicity does lead to 
good results, one can see that complexity is even better.  Studies of 
machine learning, which is in principle a higher-dimensional version of 
curve-fitting, show that complicating the result, while preserving its 
behavior on the old data, can improve its performance.27  Leo Breiman 
goes so far as to speak of “two cultures” in statistics:  an older style that 
looks for simple and explanatory models of data, and a more 
contemporary style that embraces large and internally complex “black-
box” predictors such as neural nets and random forests, as long as they 
are equipped with methods of smoothing to prevent overfitting of the 
data.28 

The natural conclusion to reach is that simplicity, or fewness of 
parameters, is not in itself desirable in curve fitting and related contexts, 
but only works because it is normally used in such a way as to correlate 
with smoothness, which is what really enables prediction.  Prediction is 
what counts, and simplicity may or may not help it. 

CONCLUSION 

Statistical methods do have advice to offer on how courts should 
judge quantitative evidence, but in a way that supplements normal 
intuitive legal argumentation rather than replacing it by a formula.  In 
cases like Shonubi and those involving real estate valuation or the 

 

26. See Grace Wahba, Spline Models for Observational Data 45–49 (1990); Richard 
R. Picard & R. Dennis Cook, Cross-Validation of Regression Models, 79 J. Am. Stat. Ass’n 
575 (1984). 

27. See Pedro Domingos, The Role of Occam’s Razor in Knowledge Discovery, 3 Data 
Mining and Knowledge Discovery 409 (1999); C. Schaffer, Overfitting Avoidance as Bias, 
10 Machine Learning 153 (1993); G.I. Webb, Further Experimental Evidence Against the 
Utility of Occam’s Razor, 4 J. Artificial Intelligence Res. 397 (1996). 

28. Leo Breiman, Statistical Modeling:  The Two Cultures, 16 Stat. Sci. 199, 221–22 
(2001) (advocating active monitoring to protect against overfitting). 
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measurement of environmental risks, there is relevant quantitative data 
and hence a need for technical statistical advice.  It is crucial to know 
what properties of the data are statistically relevant to the inferential 
task, the answer to which determines the appropriate reference class in 
which to take counts.  Knowledge of the relevance of properties is of two 
kinds.  The first, commonsense or scientific knowledge of causes and 
symptoms, is subject to the usual style of intuitive reasoning and 
challenge in the courtroom.  The second, obtained from statistical 
methods such as variable selection and the fitting of models, is also 
crucial when there is significant reliance on inference from a set of 
quantitative data.  The statistical techniques should neither dominate 
nor be dominated by intuitive reasoning.  Lawyers need to understand 
both styles of reasoning in order to integrate them. 
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